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Finite lattice calculation of the quantum mechanical 
n-vector model 

M Kolb, R Jullien and P Pfeuty 
Laboratoire de Physique des Solidest, UniversitC de Paris-Sud, Centre d’Orsay, 91405 
Orsay, France 

Received 5 April 1982, in final form 4 June 1982 

Abstract. The truncated quantum mechanical n-vector model in one dimension is studied 
by means of the phenomenological renormalisation group (PRG) and the block renormalisa- 
tion group (BRG) for general values of n. Particular emphasis is put on the extrapolation 
of the finite size results using the finite size scaling hypothesis. Accurate estimates of the 
critical properties can be made for 0 2. The two methods used are critically compared. n 

1. Introduction 

Recently, Hamiltonian versions of classical systems have received considerable atten- 
tion. Besides being interesting in their own right, these models are connected to 
lattice formulations of gauge theories (Kogut 1979). For systems with a classical 
analogue, the relationship between the classical and its corresponding quantum 
mechanical model can be investigated. Presumably both formulations describe the 
same critical phenomena, allowing for the most convenient choice in actual calcula- 
tions. 

The quantum mechanical it-vector model has many applications in thermodynamics 
through its classical analogue (Stanley 7.974) or its connection with field theory (Migdal 
1975). The classical n-vector model corresponds for various values of n to models 
which have interesting critical properties: n = 1 is the well studied Ising model, n = 2 
the planar or XY model (Kosterlitz and Thouless 1973) and n = 0 is connected with 
the statistics of polymers (de Gennes 1972). If n is continued to n = -2, the critical 
properties become gaussian (Balian and Toulouse 1973). 

Thermodynamic properties of quantum mechanical systems can be studied with 
the same methods used for classical ones, notably perturbation expansions (Hamer er 
a1 1978), exact solution of finite systems (Hamer and Barber 1981) and the renormali- 
sation group (Drell er a1 1976). In all these calculations it is important to estimate 
how fast the results converge with increasing order. 

In the present calculation, we have looked at the n-vector model using two different 
kinds of renormalisation group transformations. Particular attention has been paid 
to the convergence and the validity of the extrapolations. Comparing the two concep- 
tually very different approaches gives us more confidence in our results. Varying n 
continuously lets us link up with the exactly known values. We have chosen finite 
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lattice renormalisations as they give numerical estimates which frequently converge 
extremely fast (Derrida 1981). 

This work serves as a guide to more interesting (and more complicated) systems, 
notably those with fermions (Pfeuty et a1 1982), as the methods used are not specific 
to the n-vector model. Higher-dimensional systems may be considered, as has been 
done for the transverse Ising model using block methods (Friedman 1976, 1978, 
Subbarao 1976) and the phenomenological RG (dos Santos eta1 1981). Other generali- 
sations include the study of crossover phenomena (dos Santos and Stinchcombe 1981). 

In 8 2, we introduce the model and perform the necessary analytic continuation 
in n. In 8 3, the finite lattice methods are analysed with the finite size scaling ansatz; 
in appendix 1, the consequences of this assumption are derived in detail. Section 4 
presents the results of the phenomenological renormalisation transformation and in 
8 5 we apply the block renormalisation group. In appendix 2 the transformations are 
given explicitly for arbitrary n and the smallest lattice sizes. 

2. Quantum mechanical n-vector model 

The classical n-vector model on a lattice is given by the Hamiltonian (Stanley 1974) 

2 (spy= 1, 
(ij) a = l  a = l  

where (ij) sums over all nearest-neighbour pairs and each continuous variable Si has 
n components. Via the transfer matrix, this model in d dimensions is related to the 
quantum mechanical n-vector model in (d - 1) dimensions where the time now plays 
the role of the extra dimension. 

Thus the classical model on a square lattice, which we wish to study, is the analogue 
of the quantum mechanical model on a linear chain. The continuous variable S leads 
to an infinite number of states per site for the Hamiltonian system. It can be argued 
(Luther and Scalapino 1977) that the critical properties of the model are not altered 
if one truncates the number of states by retaining only the lowest singlet and n-fold 
degenerate multiplet at each site. With these simplifications, our model is given by 
the Hamiltonian, for N sites, 

where the single site operators d, and 8; act on site m. We denote the singlet state 
by and the n-multiplet by CY = 1,2, . . . , n. The model is completed by defining 

where Sa,@ is the Kronecker delta function. Periodic boundary conditions are imposed 
and the parameter x takes the role of the temperature. This is a consequence of the 
fact that the thermodynamic properties of the two-dimensional system map into the 
ground state properties of the Hamiltonian model (Kogut 1979). We note that the 
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symmetries of the classical model have been preserved in the truncated version. A 
number of calculations indicate that the critical properties are indeed unaffected by 
the truncation (Hamber and Richardson 1981, Jullien and Pfeuty 1981). 

We are interested in physical quantities (like the ground state energy) depending 
continuously on n. Hence, analytical continuation must be performed starting from 
the positive integers, for which the model is well defined. We propose to perform 
the continuation at the level of the Hamiltonian. In addition to the obvious advantage 
of a continuation at an early stage, it will make the practical calculations easier. 

The basic idea is to work with vectors which are independent of n and to introduce 
the n-dependence explicitly. The Hamiltonian itself suggests this representation. We 
proceed in two steps. Let the states of the system be written as 

where a = state of first site, . . . , w =state of Nth site. Starting with the state 10 . . . 01 
and applying Xi=, l?E-ll?k, one creates states of the form 

This procedure generates invariant subspaces in a very natural way, for example 

I O . .  . O / ,  (0 . . .  11 . . .  0 1 ,  I . . .  11 . . .  11 . . . I ,  I . . .  11 . . .  22 . . . I  etc(sing1et) (6 )  

11 . . . O i ,  11 . . . I 1  . . .I, 11 . . .22  . . .) etc (n-multiplet) 

or 

(7) 

and so forth. 
The notation adopted is to sum over all paired labels, whereby distinct labels stand 

for distinct components. Single labels stand for arbitrary but fixed components cy # 0. 
The distinction between singlet, n-multiplet etc comes from the fact that the Hamil- 
tonian leaves these subspaces invariant. Thus 

n 

a.p = 1 
0 # P  

I . ,  . l l , ,  . 2 2 . .  ,/ stands for 1 1 . . . c y a . . . p p . . . / ,  

I . ,  , l . .  . 2 2 , .  ./ stands for 1 \ . . . c y . . . p p . . . / ,  etc. 
p=1  

In this representation n appears only in the matrix elements of the Hamiltonian and 
in the normalisation of the states. The states are orthogonal, but their norm is not 
necessarily positive definite. In the present case this does not pose any problems. 
Also, the Hamiltonian is no longer symmetric (for general n ) ,  though it stays real for 
all real n.  

Practical considerations lead us to use still another representation. What we gain 
is that the total number of states is smaller. However, the states are not orthogonal 
any more. The difference with the above representation consists in allowing the 
components of different labels in the notation of equation (8) to be the same. For 
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example, 1 .  . . 11 . . . 11 . . . I  is incorporated in I. . . 11 . . 2 2  . . ./ and now 

” 
1 . .  * 11..  - 2 2 . .  . I  stands for 1 l . . . a a . . . p p . . . l  etc. (9) 

a , P  = 1 

To give an idea of the economy using these vectors, the ca 3000 symmetrised 
states for n = 2 (or 30 000 for n = 3) and N = 10 reduce to 150 singlet and 435 
n-multiplet states, independent of n. As for finite lattice methods the limiting size is 
dictated by the number of states, this reduction is most welcome. 

3. Finite lattice methods 

The quantum mechanical n-vector model can be solved exactly for n = 1, the Ising 
model (Pfeuty 1970, Hamer and Barber 1981). For other values of t i  there exists no 
exact solution. A number of calculations have succeeded in extracting critical proper- 
ties for several values of n. Perturbation calculations in x (strong coupling expansion) 
have been performed for the full (Hamer et a1 1978, 1979) and the truncated (Moore 
and Wilson 1980, Barber and Richardson 1981, Hamber and Richardson 1981) model. 
Also, the renormalisation group has been applied to the problem in the form of the 
phenomenological (Hamer and Barber 1981) and the block transformation (Drell et 
a1 1976, Jullien et a1 1978, 1979). 

Here, we wish to apply these methods to the case of general n ,  with emphasis on 
the improvements obtained when N, the system size, is increased and the possibility 
of extrapolation to N = 00. The important assumption for this kind of calculation is 
the finite size scaling hypothesis (Fisher and Barber 1972). Given a physical quantity 
F ( x ) :  if F ( x )  behaves like 

F ( x )  - AX = I X  -x,/, (10) 

near the critical point x , ,  then F ( x ,  N )  has the form 

F ( x , N ) - N ” ’ ” ( a o + a I A x N ” ” + .  . .), ao, a l  = constant, (11) 

for Ax ’0, N +CO.  The most direct way to estimate the critical properties (x,, w ,  v )  
from finite N calculations uses 

and Y is the correlation length exponent, 6 - Ax-”. The quantities which we use are 
the energy gap 

g ( x , N ) = E i - E o  (13) 

between the energies of the ground state 10) and the first excited state 11) of the finite 
system, and the matrix element 

of the operator 6, equation (3). 
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The exponent w I v  is related to the dynamical critical exponent for the gap and 
to the correlation function exponent for the matrix element: 

2 = - w / v  gap, 
7712 = - w / v  matrix element, 

We assume (and verify) that the dynamical exponent z = 1, which holds true for 
models with a classical analogue. 

A more powerful way to analyse the finite lattice results is with the renormalisation 
group. First, let us consider the phenomenological renormalisation group (PRG) which 
is based on the equation 

N-"o/"F(x ,  N )  =M-"o /"F(x ' ,  M ) ,  M < N .  (16) 

This defines x '  = x ' ( x ,  M,  N )  (Nightingale 1976, Sneddon and Stinchcombe 1979). 
Finite size scaling asserts that this transformation becomes exact when M, N + CO. In 
appendix 1 we derive the consequences of this hypothesis on the convergence. It is 
advantageous to choose M = N - 1 and w o  = w,  if possible. We find 

x ,=x;+O(N- ' l" ) ,  # O O ,  (17) 

x ,  = x &  + O(N-"-""),  w = W O ,  (18) 

where x $  is the fixed point, x &  = x ' ( x $ ,  N - 1, N ) ,  and cy the exponent characterising 
the leading correction to the asymptotic scaling. 

The second method used is the block renormalisation group (BRG) (Drell et al 
1976). The spirit of this approach is very different from the PRG. Here, the ground 
state properties are calculated iteratively. The approximation consists in retaining 
only the lowest few energy levels in each block in order to avoid proliferation of the 
renormalisation group parameters. If the BRG is truncated to the lowest two levels 
at each iteration, the transformation becomes (Jullien et al 1978) 

(20) 

where the gap g and the matrix element a are given by equations (13) and (14) but 
now for a system with free ends. As with increasing N the BRG becomes exact, the 
results can also be analysed in terms of finite size scaling. In appendix 1 we determine 
how x c  and v are obtained from the BRG for N + 03, namely 

(21) 

x ' ( x ,  N )  =xa2(x ,  N ) / g ( x ,  N )  

x c  = x $  + o(N- ' / " ) ,  

(g) ="'"(a +O(N-"") ) ,  a = constant. 
x = x k  

The usefulness of the finite lattice methods depends on the validity of the asymptotic 
expansions. Equations (17)-( 19), (21) and (22) provide self-consistency conditions 
for the asymptotic region. By extrapolating the finite N results to N = CO, better 
estimates of the critical properties can be obtained. Finally, comparing PRG and BRG 

lets us judge how well the two methods perform. 
The results presented in the next two sections have, for all but the smallest sizes, 

been obtained numerically. The main task is the calculation of the lowest lying 
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eigenstates and their energies. In order to be able to handle the matrices for N up 
to N = 10 (PRG) resp N = 9 (BRG) with relative ease, we used the Lanczos scheme 
(Paige 1972, Roomany et a1 1980). The method, ordinarily used for Hermitian 
matrices, has been generalised to be applicable to the present non-symmetric case 
(see also Wilkinson 1965). 

4. The phenomenological renormalisation group 

We have applied the fundamental PRG equation (16) to the gap g and the matrix 
element a for a selection of values of n in the range -8 s n s 8. 

Firstly, for n = 1, the Ising model, the critical properties have been determined 
using the different methods and compared with the exact results. The results are 
listed in table 1 for sizes up to N = 7 .  As always, unless indicated otherwise, M = N - 1. 
The convergence sets in for N as small as N = 3 but one has to keep in mind that 
n = 1 is a rather special case. The matrix element a (x) with the exact value of w o  = w 
gives slightly better results than the gap g(x). 

Next, the case n = 2 is considered. The results (together with those of the BRG) 

are given in table 2. There are strong odd/even fluctuations in N and the asymptotic 
analysis of § 3 cannot be applied to the series. We have also tried M = N - 2, but the 

Table 1. PRG of the transverse Ising model (n = 1). x, is the critical coupling and z ,  Y ,  

q are the critical exponents. For both the gap g(x)  and the matrix element a ( x )  (equations 
(13) and (14)) we compare finite size scaling (equation (12)) with the PRG for N = 7 and 
its extrapolation. a is the correction-to-scaling exponent (the exact value of a for the 
gap is a = 2). In this and the following tables, the number of decimals retained for the 
finite N results are such that only the last one changes when comparing N - 1 and N. 
For a comparison of these results with other RG calculations, classical and quantum 
mechanical, see for example table I1 of Hirsch and Mazenko (1979). 

Correction 
Equations Extrapolation exponent 

Exact (12) N = 7  N = m  a 

x c  0.5 0.505 0.4988 0.4998 2.2 
Z 1 1.01 
Y 1 1.1 0.87 0.96 1.9 
712 0.12s 0.1261 0.1252 1.8 

Matrix element a ( x )  

Correction 
Equations Extrapolation exponent 

Exact (12) N = 7  N=03 a 

XC 0.5 0.49 0.4996 o.soo1 2.6 
2 1 1.05 
V 1 1.1 0.83 0.97 1.8 
VI2 0.12s 0.12 0.125 

(imposed) 
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Table 2. Comparison of PRG and BRG for n = 2. The PRG estimates a transition at x ,  = 3.5 
whereas for the BRG x * ( N )  grows logarithmically. q for the BRG is estimated from the 
even N results. 

~~ 

x, ( X * ( N ) )  l l v  vi2 

N PRG BRG PRG BRG PRG BRG 

2 
3 
4 
5 
6 
7 
8 
9 

10 
Extrapolation 
N = W  

0.66 
0.66 0.69 
1 .oo 0.73 
1.15 0.76 
1.37 0.78 
1.42 0.80 
1.52 0.82 
1.60 0.84 
1.67 
3.5iz1.0 InN 

-1.76 
-0.37 
-0.30 
-0.18 
-0.14 
-0.11 
-0.08 
-0.07 
11 / v i  < 0.03 

0.206 
0.326 
0.358 
0.375 
0.385 
0.393 
0.398 
0.401 

0.184 
0.156 
0.148 
0.143 
0.140 
0.137 
0.135 
0.134 
0.127 *0.005 0.14 *0.02 

results are not conclusive either. Nevertheless there is qualitative agreement with the 
theory of Kosterlitz and Thouless (1973). For n > 2, the PRG has no longer a non-trivial 
fixed point. This is an indication that there is no phase transition. 

Let us now turn to non-integer values of n. First, we determine the dynamical 
exponent 2. Using equations (12) and (15), we conclude that z = 1 in the whole range 
-2 c n c 2. As an example, we show in figure 1 the gap as a function of N for n = 1.5. 

\ \  \ 

0 2  

0 3  

O L  

0 5  

0 65 
0 7  

0 1 2 
I n  N 

Figure 1. Log-log plot of the gap g ( x ,  N )  against N for n = 1.5. At x,=0.68, g - 1/N,  
thus z = 1. 
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At the critical point ~ ~ ~ 0 . 6 8 ,  g(x, N )  scales with N and z = 1. In figure 2 the general 
form of g(x) is shown for varying n.  

Analysing the finite N results, one concludes that g is real for all x as long as 
n 3 0. As long as n > 1 the gap stays positive and goes through a minimum. When 
n < 1, the gap vanishes at a value x o  > x c .  This shows nicely how n = 1 is a very special 
situation, where g ( x  + 00, N )  = 0. For -2 < n < 0, the gap is complex for x >XI, where 
x1 >xo varies with N .  When n < -2, g(xl)  > 0 and there is no longer a real fixed point. 
Note that we define the gap always between the n-multiplet and the singlet. In the 
range - 2 s n  ~2~ the singlet is always the ground state as long as x e x c .  The case 
n = -2 is a limiting situation where xc, xo and xl all tend to the same value with 
increasing N .  The matrix element a ( x )  can be analysed similarly. 

The PRG analyses for n = 1.5 and n = 0.5 are given in table 3. The results agree 
well with the scaling ansatz. The corrections indicate (Y = 2  independent of n. For 
n = 0.5, the equation g(xo ,  N )  = 0 provides another method to calculate the critical 
behaviour. The case n = 0 is of particular interest. In table 4, we list the results. For 
small values of N (e71 the convergence is quite rapid. However, when N ’=_ 10, we 

I 

0 5 t  

Figure 2. Gap g(x, N )  against x for -3 < n C: 3. In ( a )  the results far N = 7 are shown, 
in ( b )  the extrapolation to N = a. For n < 0 the gap is complex for x > xl, indicated by (@), 

Table 3. PRG for n = 1.5 and n = 0.5. The results converge well and are consistent with a 
correction exponent (I = 2. For n = 0.5, g(x0) = 0 has been analysed with finite size scaling. 
The convergence x o ( N )  ..* x, is expected to be like N-””. 

n 

~ ~~ 

Convergence 
X *  U 1112 exponent 

N = 1 0  0.6650 0.87 0.134 2.2 * 0.3 1’5 Extrapolation 0.6660* 0.0005 1.36k0.04 0.132 +0.001 

N=lO 0.418 02 0.830 0.1144 
OS Extrapolation 0.418 15*0.0001 0.845*0.005 0.1152*0.0004 2.05i0.1 

o.5 { ~ ( x o )  = 0} ,  N = 7 0.472 0.843 0.080 1.2*0.1 
Extrapolation 0.421 * 0.05 
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Table 4. PRG for n = 0 (polymers). 

N X *  V VI2 

3807 

3 0.361 06 0.6741 0.083 78 
4 0.364 56 0.7134 0.093 89 
5 0.365 71 0.7303 0.096 89 
6 0.366 22 0.7392 0.098 37 

0.366 50 0.7444 0.099 27 
8 0.366 66 0.7478 0.099 87 
9 0.366 77 0.7500 0.100 31 

10 0.366 85 0.7516 0.100 65 

7 

cannot exclude a maximum for v, and v = 0.75 is a possible exact value. In table 5 ,  
we present the various analyses performed. Again, the convergence of the PRG is 
characterised by (Y = 2 and xo tends towards x, like N-l'".  

In order to understand the behaviour of n = 0 better, we look at n = -1 and n = -2. 
We expect the effects which slow the convergence to appear more clearly. In table 
6, the relevant data are collected. For n = -2, the exponent v actually reaches a 
maximum at N = 6 and then approaches v = 0.5. q shows a similar trend. The 

Table 5. Comparison of various methods for n = 0. The PRG is applied to the gap g(x)  
and the matrix element a ( x )  (with w o  = 0). Analysis of the equation g(xo) = 0 gives results 
that match those of the PRG. 

U VI2 
Convergence 
exponent 

PRG, gap, z = 1 
N = l O  0.366 85 0.7516 0.100 65 2.2 * 0.3(a) 
Extrapolation 0.3672 f 0.0002 

PRG, matrix element, wo = 0 
N = 7  0.378 0.71 kO.1 
Extrapolation 0.365 *0.008 

g(X0) = 0, N = 7 0.387 0.737 0.063 1 .4*0 .3 (1 /~ )  
Extrapolation 0.369*0.004 0.100*0.002 

Table 6. PRG for n = -1 and n = -2. The presence of another fixed point very close to 
the physical one prevents us from making a reliable extrapolation. v(N) goes through a 
maximum at N = 6 and then approaches v = 0.5. 

~ 

a12 Comments 
~~ ~~~~ 

PRG N = 10 0.303 67 0.6299 0.064 No convergence 
n = - 1  

PRG N = 1 0  0.264 76 0.536 0.010 Unphysical fixed point 
n = - 2  1 ;==06540 at x *  = 0.266 
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estimates for x, do not go through an extremum, but the asymptotic region has not 
been reached yet. The reason for these difficulties is the presence of a second fixed 
point at x z 0.266 very close to the physical one at x = 0.265. 

In all, the PRG proves to be a valid method to calculate critical properties for 
general n. The convergence is satisfactory for values of n away from the limiting 
cases n = -2 and n = 2. The critical point x, behaves much more regularly than the 
exponents for all values of n. 

5. Block renormalisation group 

In this section, we present the results of the block renormalisation transformation, 
equation (20). The calculation is slightly more involved than the PRG as the blocks 
are not translationally invariant any more. Also, the definition of the matrix element 
a ( x )  contains some ambiguity. In accordance with Jullien et a1 (1978), we choose to 
evaluate l? in the middle of the block, in order to minimise edge effects. The qualitative 
picture for the energies and the matrix element is the same as for the PRG. For x e x ,  
the states of lowest energy are symmetric under the symmetry operations of the block. 

For n = 1, we have reproduced the results of Jullien et a1 (1978). With the analysis 
of appendix 1, the estimates are considerably improved by extrapolating to N = CO. 

It is interesting to note that an unbiased extrapolation of v(N) would not favour a 
logarithmic convergence, but the N = CO value is more accurate with the logarithmic 
extrapolation. Table 7 gives the results. The matrix element a ( x )  is afflicted by strong 
odd/even fluctuations requiring us to analyse the odd and the even N points separately. 
The even N series are much smoother. 

Table 7. Results of BRG for n = 1. The exact values are compared with those for N = 7 
and their extrapolation to N = a. q has been calculated with equations (12) and (15). 

Exact 0.5 1 .o 0.125 
N = 7  0.474 1.16 
Extrapolation 0.505 0.98 0.100 oddiodd 

0.123 even/even 
Convergence exponent 1.05 1% 

The same analysis has been done for n # 1 and is reported in table 8. For n > O  
the convergence of x, is characterised by the exponent 1/v, as expected. The thermal 
exponent v ( n  ) from the renormalisation group analysis converges very slowly and 
there is no clear advantage of a logarithmic extrapolation. 77 exhibits odd/even 
fluctuations which are even more pronounced than for n = 1. When n < O ,  the 
maximum value N = 9 is too small to estimate the limiting values. As for the PRG, 
the best performance of the BRG is for n = 0.5 and n = 1. For n = 2, the BRG is 
completely inadequate to describe the transition (Jullien et al 1979). The series for 
x, and v in table 2 show that x, grows logarithmically with N, thus missing the 
transition, and v remains finite. Only 77 is consistent with the expected 77 = 0.25. 
When n >2 ,  there is no transition, as illustrated in figure 3. For n < O  effects similar 
to the PRG are found; in particular, the series for x, and v go through a maximum. 
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Table 8. ERG for n # 1 (-2< n < 1.75) analysed as in table 7 .  When it was possible to 
extrapolate, the results are given along with the convergence exponent. Y was extrapolated 
logarithmically. For v ,  the better even/even results are quoted. 

XC XC Convergence L' V 

n N = 9 extrapolated exponent N = 9 extrapolated q/2 

1.75 ( N = 7 )  0.656 0 . 7 8 i 0 . 1  0 . 6 i  0.1 1.79 0.13 Zt0.01 
1.5 0.586 0 .66~t0 .02  0.85*0.1 1.45 1.28 0.135 *0.01 
0.5 0.4169 0.420+0.002 1.40rt0.2 0.96 0.88 0 . 0 9 7 ~ 0 . 0 1  
0 0.3724 0.84 

-1 0.3129 0.69 
-2 0.273 0.59 

Y '  = x  

// 
2 -  

0 2 3 0 2 3 
X 

Figure 3. BRG for n > 2 .  x ' ( x )  > x  for all x >0, there is no transition. 

The smaller n the sharper the maximum and the earlier (in N )  it occurs. For II < -2, 
the BRG ceases to have a real fixed point. 

The BRG supports a transition for -2 G n < 2 which is continuous in n. It is more 
sensitive to odd/even fluctuations in N and to the problem of slow convergence than 
the PRG. 

6. Discussion 

The purpose of this calculation has been to assess finite lattice methods and to 
extrapolate, when it is feasible, to N = 00. The model studied, the truncated quantum 
mechanical n-vector model, is interesting for a number of reasons. It is believed-and 
the numerical evidence supports this-that this model exhibits the same critical 
phenomena as the classical n-vector model. For a number of values of n, the critical 
properties are known exactly, which allows one to assess the convergence of the results 
with increasing N .  The variation of the critical properties with n is continuous, which 
permits interpolation between known limits. 

The PRG, for the present model, proves to be the better of the two methods. As 
we compare neighbouring sizes N and N - 1, the convergence is much improved. 
There is flexibility in defining the transformation; the matrix element a ( x )  (equation 
(14)) works as well as the gap. As long as n is not too close to the border line situations 
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( n  = -2, n = 2), the asymptotic region in N starts for values as small as N -4, and 
the correction term to the scaling form behaves like N--* .  The consistency of the 
behaviour of the various quantities is a valid indicator of the asymptotic region. 

The BRG is more sensitive to the difficulties encountered for n = -2 and n = 2. 
For n = 2, it does not predict the transition correctly. When n = -2, the series is too 
short to make accurate predictions. Figures 4-6 summarise the results and compare 
with other calculations. 

The present treatment can be applied equally well to other systems, as it only uses 
the scaling hypothesis. Of course, it requires series which are sufficiently long (N = 
8-10) to justify the extrapolation. For the block method, it would be desirable to 
find modifications (as suggested in appendix 1) to improve the answers for small N.  
Application to higher dimension is possible, though the shorter series make the 
conclusions more precarious. 

0751 

Q h I 
0 25' 9 

-2 -1 0 1 2 
n 

Figure 4. Best estimates of the critical coupling x, as a function of n by the PRG ( x )  and 
the BRO (0). The strong coupling expansion of Hamber and Richardson (1981) coincides 
with the PRG for n < 2 to within the accuracy of the graph. The exact value for n = 1 is 
x, = 0.5. 

- 2  -1 0 1 2 
n 

Figure 5. Thermal exponent U against n by the PRG (x)  and the BRG (0). Renormalisation 
calculation (0) (Cardy and Hamber 1980) and strong coupling results (+) (Hamber and 
Richardson 1981) have been indicated when they differ from the PRG. 
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X I 

- 2  -1  0 1 2 
n 

Figure 6. Correlation function exponent TJ against n by the PRG ( X I  and the B R G  (0). 
Also indicated are TJ = 0 for n = -2 (a), = 0.25 for n = 1, 2 (a) and the strong coupling 
estimate for n = 2 (+) (Hamber and Richardson 1981). 
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Appendix 1. 

In this appendix, we derive the asymptotic behaviour of the renormalisation group 
transformation when the size of the system is large. 

Let A(x) be a physical quantity which has the following form near the critical 
point x,: 

A(x)-Ax-", AX = 1~ - x C / .  (Al.1) 

For a system of linear dimension N, the finite size scaling hypothesis postulates that 

A ( x , N ) = N " ' " ( A ( z ) + A ~ ( z ) N - "  +.  . .), z = hxN l'", (A1.2) 

where A(z)  is a universal scaling function which can be expanded at z = 0. In order 
torecover ( A l , l ) , A ( z + a ) - z  . 

w is the critical exponent characteristic of A and v is the correlation function 
exponent. We choose the leading correction to be a power in N, with an exponent 
a >o.  

First, let us apply equation (Al.2) to a generalised phenomenological renormalisa- 
tion transformation which defines x '  = x ' ( x ,  M, N) through 

--w 

N - W o / V  A(x,N)=M-""'"A(x',M), N >M. (A1.3) 

In the limit N, M + 00, S = N - M  = constant, the fixed point x * = x ' ( x  *) satisfies 

AwA(z*)+z*dA(z*)/dz*=O (A1.4) 
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For Aw small, z *  = O(Aw).  The derivative (dx'/dx),=,* then becomes 

(A1.5) 

(A1.6) 

If w / u  is exactly known, the convergence improves for Aw = 0, namely 

x *  = x c +  O(N-"-' l") ,  (d~'/d~),~,*~(l-~/N)~''"(1+O(N~~~')). (A1.7) 

These arguments indicate that we can generalise the PRG to the case when w / u  is not 
known exactly. The fixed point x *  still tends toward xc, but at a slower rate, and the 
derivative is no longer related to v in a simple fashion. The same finite size scaling 
analysis can be applied to the block renormalisation transformation. With increasing 
block size, the truncation of the states becomes negligible and the exact critical 
behaviour is approached in the defining equation of the BRG 

x ' ( ~ , N ) = x u * ( x , N ) / g ( x , N ) .  (A1.8) 

We apply equation (A1.2) to the ratio a 2 / g .  The fixed point condition x ' ( x * )  = x *  
imposes w = 0. Then x *  satisfies for large N 

x *  =x,+ N -  '"'(Z*+O(N-')+O(N-")) (A1.9) 

with z *  determined by the scaling function A,  

A(z*) = 1. (Al .  10) 

The derivative is related to U ,  

*) N"" +constant. (Al.11) 

This suggests that the BRG behaves similarly to the PRG, for Aw # 0. If A(0)  = 1, we 
find 

dx' dA 
-- 1 =xC- (0)N'i"(l+O(N-a- ' '")) .  
dx dz 

x * = xc + O(N-"-'), (A1.12) 

Hence, the PRG gives better results than the BRG. The latter could be improved by 
modifying the transformation. Another possibility to speed up the convergence 
consists in comparing the BRG for different sizes. 

Appendix 2. 

Here explicit expressions for the renormalisation group equations for arbitrary n are 
presented. For the PRG, the situation when N = 3 and M = N - 1 = 2 can be solved 
analytically. In the representation of § 2, the states for the single (s) and n-multiplet 
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subspaces (m) and their normalisation are 

N State Normalisation Subspace 

1 
n 

S 

S 

2 m 

3 10001 1 
3 /1101+ /0111+ 1101/ 3 n  

S 

S 

3 11001 + /010) + 10011 3 m 
3 11221+ ~1211+/1121 3 n  + 6  m 

The Hamiltonian takes the form 

1 - 2 x  ( n + 2 ) x  
- 3 n x ) ,  H Y = (  - X  3 ), N = 3 .  

-x 2 - 2 x  

The gap g ( x )  then is 

and the matrix element a ( x ) ,  for N = 2 ,  

a 2 =  ( l + r  +2x)/v’2[(1 +r )2+4nx2~’ /2 .  (A2 .2 )  

A number of properties found here remain valid for larger N. The Hamiltonian is 
real for all real values of n but is not symmetric. A s  long as n 20 ,  the gap and the 
matrix element stay real for all x .  The PRG, 3g3(x )  = 2g2(x’),  has a physical fixed point 
O < X * < C O  for - 2 s n  s 2 .  The gap has a finite size transition g(xo)=O at a value 
xo>x*  for n < 1 and g(x )<O for x >xo.  Similarly a ( x )  > 1 for n < 1 and x sufficiently 
large. 

The block renormalisation group, for N = 2,  is also represented by the states listed 
above. The Hamiltonian is 

0 -xn 
respHT = ( l - x ) .  

The BRG 

( A 2 . 3 )  

is determined by 

(A2 .5 )  

The fixed point satisfies a i ( x * )  = g2(x *) and is real for -2 s n s 2.  For both transforma- 
tions, for x e x * ,  the ground state is a singlet and the first excited state an n-multiplet. 
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